RUHS Entrance Examination 2019 Question Paper
Paramedical UG

Q. No. 1 0061001	Strongest forces in nature are
Option A	Nuclear forces
Option B	Electrostatic forces
Option C	Gravitational forces
Option D	Electrostatic forces and Gravitational forces
Correct Option	A

Q. No. 2 0061002	$\mathbf{I f}$ the resultant of \mathbf{n} forces of different magnitudes acting at a point is zero, then the \boldsymbol{m} mimum value of \mathbf{n} is
Option A	1
Option B	4
Option C	2
Option D	3
Correct Option	D

Q. No. 3 0061003	The spherical shape of rain-drop is due to
Option A	Density
Option B	Pressure
Option C	Viscosity
Option D	Surface tension
Correct Option	D

Q. No. 4 0061004	A spherical equipotential surface is not possible for
Option A	point charge
Option B	dipole
Option C	uniformly charged sphere
Option D	spherical capacitor
Correct Option	B

Q. No. 5 0061005	An ideal gas expands isothermally from a volume V1 to V2 and then compressed to its original volume V1 adiabatically. Initial pressure is P1, final pressure is P3 and the total work done is W, then
Option A	$\mathrm{P} 3>\mathrm{P} 1, \mathrm{~W}=0$
Option B	$\mathrm{P} 3<\mathrm{P} 1, \mathrm{~W}>0$
Option C	$\mathrm{P} 3>\mathrm{P} 1, \mathrm{~W}<0$
Option D	$\mathrm{P} 3<\mathrm{P} 1, \mathrm{~W}=0$
Correct Option	C

Q. No. 6 0061006	A heater of $\mathbf{2 2 0} \mathbf{V}$ heats a certain volume of water to certain temperature in $\mathbf{2}$ minutes, if the voltage drops to $\mathbf{1 1 0} \mathbf{~}$ then the same results will be obtained in
Option A	4 minute
Option B	6 minute

Option C	8 minute
Option D	10 minute
Correct Option	\mathbf{C}

Q. No. 7 0061007	During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The \bar{C}_{P} \bar{C}_{V} for the gas is $^{\text {Option A }}$
Option B	$1 / 2$
Option C	$2 / 3$
Option D	$3 / 2$
Correct Option	C

Q. No. 8 0061008	The true value of angle of dip at a place is $\mathbf{3 0}$ degree, the apparent dip in a plane inclined at an angle of $\mathbf{6 0}$ degree with magnetic meridian is
Option A	$\operatorname{Tan}^{-1}(2 / \sqrt{3})$
Option B	$\operatorname{Tan}^{-1}(2)$
Option C	$\operatorname{Tan}^{-1}(\sqrt{3})$
Option D	$\operatorname{Tan}^{-1}(\sqrt{3} / 2)$
Correct Option	A

Q. No. 9 0061009	$\mathbf{I f}$ a spring is stretched to $\mathbf{0 . 3 0}$ meter, when a mass of $\mathbf{0 . 6 0} \mathbf{~ k g}$ is suspended $\left(\mathbf{g}=\mathbf{1 0 m} / \mathbf{s}^{\mathbf{2}}\right)$ then the force constant \mathbf{K} will be
Option A	$20 \mathrm{~N} / \mathrm{m}$
Option B	$25 \mathrm{~N} / \mathrm{m}$
Option C	$18 \mathrm{~N} / \mathrm{m}$
Option D	$15 \mathrm{~N} / \mathrm{m}$
Correct Option	A

Q. No. 10 0061010	The material of permanent magnet has
Option A	High retentivity, High coercivity
Option B	Low retentivity, Low coercivity
Option C	Low retentivity, High coercivity
Option D	High retentivity, Low coercivity
Correct Option	A

Q. No. 11 0061011	Which of the following is most suitable for the core of electromagnets
Option A	Soft iron
Option B	Aluminium
Option C	Copper-nickel alloy
Option D	Tungsten
Correct Option	A

Q. No. 12 0061012	Ultrasonic waves in air produced by a vibrating quartz crystal are
Option A	Transverse waves

Option B	Longitudinal waves
Option C	Transverse and Longitudinal waves
Option D	Electromagnetic waves
Correct Option	B

Q. No. 13 0061013	Current is measured with
Option A	Ammeter
Option B	Voltmeter
Option C	Potentiometer
Option D	Galvanometer
Correct Option	A

Q. No. 14 0061014	In an amplitude modulated wave for audio frequency is $\mathbf{3 5 0}$ cycle/second, then the appropriate carrier frequency will be
Option A	50 cycle/second
Option B	1000 cycle/second
Option C	300 cycle/second
Option D	250 cycle/second
Correct Option	B

Q. No. 15 0061015	In an AC circuit, peak voltage is $\mathbf{4 1 6}$ volts, the value of effective voltage would be
Option A	294 Volt
Option B	300 Volt
Option C	416 Volt
Option D	284 Volt
Correct Option	A

Q. No. 16 0061016	Frequency of AC power in India is
Option A	50 Hz
Option B	60 Hz
Option C	220 Hz
Option D	240 Hz
Correct Option	A

Q. No. 17 0061017	Detection of gamma rays can be done by
Option A	Ionization chamber
Option B	Eye
Option C	Barometer
Option D	Thermometer
Correct Option	A

Q. No. 18 0061018	Microwave is produced from
Option A	Vibration of atom
Option B	Radioactive decay

Option C	Magnetron
Option D	X-ray tube
Correct Option	\mathbf{C}

Q. No. 19 0061019	An object is placed at $\mathbf{5} \mathbf{~ c m}$ in front of a concave mirror of radius of curvature $\mathbf{1 5} \mathbf{~ c m . ~}$ The magnification of the image will be
Option A	3
Option B	-3
Option C	6
Option D	-6
Correct Option	A

Q. No. 20 0061020	Critical angle of Crown glass with respect to air is
Option A	41.14 degree
Option B	48.75 degree
Option C	24.56 degree
Option D	37.31 degree
Correct Option	A

Q. No. 21 0061021	If refractive index of a glass is $\mathbf{4}$ then the speed of light in glass will be
Option A	$7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Option B	$7.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Option C	$0.075 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Option D	$0.75 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Correct Option	A

Q. No. 22 0061022	The portion of the wavefront of light from a distant star intercepted by the Earth is
Option A	Elliptical wavefront
Option B	Square wavefront
Option C	Plane wavefront
Option D	Spherical wavefront
Correct Option	C

Q. No. 23 0061023	The minimum energy needed by an electron to come out from a metal surface is called
Option A	Work function of the metal
Option B	Total Energy of the metal
Option C	Kinetic energy of the metal
Option D	Potential energy of the metal
Correct Option	A

Q. No. 24 0061024	Photoelectric effect involves conversion of light energy to
Option A	Electrical energy
Option B	Chemical energy

Option C	Heat energy
Option D	Wave energy
Correct Option	A

Q. No. 25 0061025	Nucleus has
Option A	Protons and electrons
Option B	Electrons
Option C	Protons and neutrons
Option D	Only neutrons
Correct Option	\mathbf{C}

Q. No. 26 0061026	The energy required to remove an electron in a hydrogen atom from $\mathbf{n}=\mathbf{3}$ state is
Option A	13.6 eV
Option B	1.36 eV
Option C	1.51 eV
Option D	0.151 eV
Correct Option	\mathbf{C}

Q. No. 27 0061027	Calculate the energy equivalent of $\mathbf{2} \mathbf{g}$ of substance
Option A	$9 \times 10^{13} \mathrm{~J}$
Option B	$18 \times 10^{13} \mathrm{~J}$
Option C	$36 \times 10^{13} \mathrm{~J}$
Option D	$27 \times 10^{13} \mathrm{~J}$
Correct Option	B

Q. No. 28 0061028	$\mathbf{5} \mathbf{C i}$ is equal to how much becquerel
Option A	$18.5 \times 10^{10} \mathrm{~Bq}$
Option B	$2.7 \times 10^{11} \mathrm{~Bq}$
Option C	$2.7 \times 10^{-10} \mathrm{~Bq}$
Option D	$18.5 \times 10^{-10} \mathrm{~Bq}$
Correct Option	\mathbf{A}

Q. No. 29 0061029	In n-type semiconductor
Option A	Number of hole greater than number of electron
Option B	Number of electron greater than number of hole
Option C	Number of hole equal to number of electron
Option D	Only holes are present.
Correct Option	B

Q. No. 30 0061030	Energy gap between valence and conduction band in insulator is
Option A	More than 3 eV
Option B	less than 0.2 eV

Option C	Between 0.2 to 3 eV
Option D	Zero
Correct Option	A

Q. No. 31 0061031	If an amplitude modulated wave has maximum amplitude of 8V and minimum amplitude of $\mathbf{4 V}$ then modulation index ${ }^{\mu}$ will be
Option A	$1 / 2$
Option B	2
Option C	$1 / 3$
Option D	3
Correct Option	C

Q. No. 32 0061032	A closed pipe and an open pipe have their first overtones identical in frequency. Their lengths are in the ratio of
Option A	$1: 5$
Option B	$2: 1$
Option C	$1: 3$
Option D	$3: 4$
Correct Option	D

Q. No. 33 0061033	A bulb and a capacitor are connected in series to a source of alternating current. If its frequency is increased, while keeping the voltage of the source constant, then bulb will give
Option A	same intense light
Option B	less intense light
Option C	more intense light
Option D	stop emitting light
Correct Option	C

Q. No. 34 0061034	On an average, a Camel heart was found to beat $\mathbf{6 0}$ times in a minute, its time period will be
Option A	1 s
Option B	2 s
Option C	0.8 s
Option D	0.001 s
Correct Option	A

Q. No. 35 0061035	A vertical wire carries a current upwards. The magnetic field at a point due north of the wire is directed
Option A	Upward
Option B	Due west
Option C	Due south
Option D	Due east
Correct Option	B

Q. No. 36 0061036	A metal wire of length L and area of cross-section A is fixed between rigid supports of negligible tension. If this is cooled, then
Option A	Length increase and tension decrease
Option B	Length decrease and tension increase

Option C	Length decrease and tension decrease
Option D	Tension increase and length increase
Correct Option	B

Q. No. 37 0061037	The magnetic moment of atomic neon is
Option A	2
Option B	zero
Option C	1
Option D	3
Correct Option	B

Q. No. 38 0061038	A gas expands from $\mathbf{1}$ litre to $\mathbf{5}$ litres at one atmospheric pressure. The work done by the gas is nearly
Option A	400 Nm
Option B	100 Nm
Option C	50 Nm
Option D	10 Nm
Correct Option	A

Q. No. 39 0061039	The average degree of freedom per molecule for a gas is 5. The gas performs $\mathbf{3 0} \mathbf{J}$ of work when it expands at constant pressure. The heat absorbed by the gas is
Option A	110 J
Option B	30 J
Option C	210 J
Option D	105 J
Correct Option	D

Q. No. 40 0061040	Peltier co-efficient of a thermo couple is $\mathbf{2}$ nano volts. If $\mathbf{5}$ amp current flows for 1 minute then heat developed at a junction would be
Option A	6 erg
Option B	3 erg
Option C	10 erg
Option D	30 erg
Correct Option	A

Q. No. 41 0061041	In cold countries during winter, water pipes sometimes burst because
Option A	water freezes and it takes heat from pipes
Option B	water freezes and pressure increases
Option C	water expands on freezing
Option D	water pipes expands on cooling
Correct Option	C

Q. No. 42 0061042	A house has 220 V power supply and it is protected by a 4 ampere fuse. The maximum number of 40 W lamps in parallel that can be turned on will be
Option A	22
Option B	40
Option C	88

Option D	160
Correct Option	A

Q. No. 43 0061043	Coatings material on raincoat makes it waterproof by increasing the
Option A	Cohesive force
Option B	Water absorption
Option C	surface tension
Option D	Angle of contact
Correct Option	A

Q. No. 44 0061044	The time period of a simple pendulum on a freely moving artificial satellite is
Option A	Infinite
Option B	10 sec
Option C	0
Option D	5 sec
Correct Option	A

Q. No. 45 0061045	A long string with a charge of λ per unit length passes through an imaginary cube of edge a. The maximum flux of the electric field through the cube will be
Option A	$\sqrt{3} \lambda \mathrm{a} / \varepsilon_{0}$
Option B	$\sqrt{2} \lambda \mathrm{a} / \varepsilon_{0}$
Option C	$\lambda \mathrm{a} / \varepsilon_{0}$
Option D	$\lambda \mathrm{a} \varepsilon_{0}$
Correct Option	A

Q. No. 46 0061046	A half ring of radius \mathbf{R} has a charge of λ per unit length. The potential at the centre of the half ring is
Option A	$k \lambda R$
Option B	$k \pi \lambda^{2}$
Option C	$k \pi \lambda$
Option D	$k \pi \lambda R$
Correct Option	\mathbf{C}

Q. No. 47 0061047	In the three states of matter, the elastic coefficient can be
Option A	Bulk modulus
Option B	Poisson ratio
Option C	Young modulus
Option D	Coefficient of volume elasticity
Correct Option	D

Q. No. 48 0061048	If the temperature increases, the modulus of elasticity
Option A	First increases \& then decreases

Option B	Increases
Option C	Unchanged
Option D	Decreases
Correct Option	D

Q. No. 49 0061049	A cyclist turns around a curve at $\mathbf{1 5}$ miles/hour. If he turns at triple the speed, the tendency to overturn is
Option A	16 times
Option B	2 times
Option C	4 Time
Option D	9 time
Correct Option	D

Q. No. 50 0061050	A Cyclist going round in a circular track at constant speed has
Option A	Constant acceleration
Option B	Constant angular velocity
Option C	Constant force
Option D	Constant velocity
Correct Option	B

Q. No. 51 0071001	When ethyl iodide and propyl iodide react with sodium in the presence of ether then they form
Option A	Only one alkane
Option B	Two alkane
Option C	Three alkane
Option D	Five alkane
Correct Option	C

Q. No. 52 0071002	Bauxite contain impurities of iron oxide is purified by
Option A	Hoop process
Option B	Serpeck process
Option C	Bayer process
Option D	Electrolytic process
Correct Option	\mathbf{C}

Q. No. $\mathbf{5 3}$ 0071003	Normality of $\mathbf{0 . 2} \mathbf{~ M}$ Phosphorous acid is
Option A	0.3
Option B	0.5
Option C	0.4
Option D	0.6
Correct Option	C

Q. No. 54 0071004	Frequency of Limiting line in Balmer Series
Option A	$3.22 \times 10^{15} \mathrm{~Hz}$
Option B	

	$7.29 \times 10^{14} \mathrm{~Hz}$
Option C	$8.22 \times 10^{14} \mathrm{~Hz}$
Option D	$5.29 \times 10^{14} \mathrm{~Hz}$
Correct Option	\mathbf{C}

Q. No. 55 0071005	An organic compound contains $\mathbf{C}=\mathbf{3 6}, \mathbf{H}=\mathbf{6}$ and rest oxygen. Its Empirical formula is
Option A	$\mathrm{C}_{3} \mathrm{HO}_{2}$
Option B	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
Option C	$\mathrm{CH}_{2} \mathrm{O}_{2}$
Option D	$\mathrm{CH}_{2} \mathrm{O}$
Correct Option	D

Q. No. 56 0071006	In which Group all the physical states (Solid, Liquid Gas) observed
Option A	Group 13
Option B	Group 15
Option C	Group 17
Option D	Group 14
Correct Option	C

Q. No. 57 0071007	Why ionization Potential of Nitrogen is greater than oxygen
Option A	Ionization potential increases with decrease in size
Option B	Nitrogen poses stable half-filled p-orbital
Option C	Screening effect in nitrogen greater than oxygen
Option D	Oxygen is more electropositive than nitrogen
Correct Option	B

Q. No. 58 0071008	Which of the following oxide of nitrogen is not a common air pollutant?
Option A	NO_{2}
Option B	$\mathrm{N}_{2} \mathrm{O}_{5}$
Option C	NO
Option D	$\mathrm{N}_{2} \mathrm{O}$
Correct Option	B

Q. No. 59 0071009	An exothermic reaction is a chemical reaction in which
Option A	heat is released
Option B	heat is absorbed
Option C	Coolant is produced
Option D	nothing happens
Correct Option	A

Q. No. 60 0071010	Root Mean Square(RMS) Velocity of an ideal gas at constant pressure varies with density relates as
Option A	d

Option B	$\mathrm{d}^{1 / 2}$
Option C	d^{2}
Option D	$\mathrm{d}^{-1 / 2}$
Correct Option	D

Q. No. 61 0071011	Frenkel defect is happened in the lattice crystal due to
Option A	An extra positive ion occupying an interstitial position in the lattice crystal
Option B	An extra negative ion occupying an interstitial position in the lattice crystal
Option C	The shift of a positive ion from its normal lattice site Creating a vacancy and occupy an interstitial site
Option D	An ion or atom missing from the normal lattice site creating a vacancy
Correct Option	C

Q. No. 62 0071012	What is work done, when $\mathrm{Fe}(\mathbf{s})$ is dissolved in aqueous $\mathbf{H C l}$ in a closed vessel
Option A	Zero
Option B	Negative
Option C	Positive
Option D	Infinity
Correct Option	A

Q. No. 63 0071013	The value of gas constant \mathbf{R} is:
Option A	$8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Option B	0.082 litre atm
Option C	$83 \mathrm{erg} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Option D	$0.987 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Correct Option	\mathbf{A}

Q. No. 64 0071014	$\mathbf{p H}$ of $\mathbf{0 . 1} \mathbf{M}$ solution of weak acid is $\mathbf{2}$. The value of ionization constant Ka of acid is
Option A	1×10^{-3}
Option B	1×10^{-4}
Option C	1×10^{-5}
Option D	1×10^{-6}
Correct Option	\mathbf{C}

Q. No. 65 0071015	Osmotic pressure is $\mathbf{0 . 0 8 2 1}$ atm at temperature of 300K. Find concentration in mole/litre
Option A	0.33×10^{-2}
Option B	0.33×10^{-3}
Option C	0.33×10^{-4}
Option D	0.33×10^{-5}
Correct Option	A

Option A	$\mathrm{Na}_{2} \mathrm{CrO}_{4}$
Option B	$\mathrm{Na}_{3} \mathrm{Cr}_{4} \mathrm{O}_{4}$
Option C	$\mathrm{Na}_{2} \mathrm{CrO}_{2}$
Option D	$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}$
Correct Option	A

Q. No. 67 071017	What is the oxidation number of iodine in $\mathbf{C s I}_{\mathbf{3}}, \mathbf{\mathbf { I C I } _ { \mathbf { 3 } }}$
Option A	$-3,-1$
Option B	$-1 / 3,+3$
Option C	$+3,-1 / 2$
Option D	$-1 / 3,+2$
Correct Option	B

Q. No. 68 0071018	Method used for removal of temporary and permanent hardness of water
Option A	Decantation
Option B	Distillation
Option C	Boiling
Option D	Filtration
Correct Option	B

Q. No. 69 0071019	A zero order reaction is one whose rate is independent of
Option A	Temperature
Option B	Reaction vessel volume
Option C	Pressure of light
Option D	Concentration of reactants
Correct Option	D

Q. No. 70 0071020	Compound insoluble in acetic acid is
Option A	Calcium oxide
Option B	Calcium carbonate
Option C	Calcium oxalate
Option D	Calcium hydroxide
Correct Option	C

Q. No. 71 0071021	A catalyst is a substance which
Option A	Increases the equilibrium concentration of the product
Option B	Supplies energy to the reaction
Option C	Alter the rate of reaction and Changes the equilibrium constant of the reaction
Option D	Shortens the time to reach equilibrium
Correct Option	C

Q. No. 72 0071022	In diborane the two H-B-H angles are
Option A	$85^{\circ}, 120^{\circ}$

Option B	$95^{\circ}, 120^{\circ}$
Option C	$75^{\circ}, 110^{\circ}$
Option D	$65^{\circ}, 120^{\circ}$
Correct Option	B

Q. No. 73 0071023	Aluminium has a great affinity for oxygen and its oxidation is an exothermic process. This fact is used for
Option A	Preparing thin foils of aluminium
Option B	Making of utensils
Option C	Preparing of duraalumini alloy
Option D	Thermite welding
Correct Option	D

Q. No. 74 0071024	Law of Reciprocal proportion was given by
Option A	Jeremias Richter
Option B	Proust
Option C	Gay Lussac
Option D	Dalton
Correct Option	A

Q. No. 75 0071025	When the temperature is increased, surface tension of water:
Option A	Increases
Option B	Shows irregular behaviour
Option C	Remains constant
Option D	Decreases
Correct Option	D

Q. No. 76 0071026	Carbon atoms in $\left.\mathbf{C}_{\mathbf{2}} \mathbf{(C N}\right)_{\mathbf{4}}$ are:
Option A	Sp hybridised
Option B	Sp and Sp^{2} hybridised
Option C	Sp^{2} hybridised
Option D	$\mathrm{Sp}, \mathrm{Sp}^{2}$ and Sp^{3} hybridised
Correct Option	B

Q. No. 77 0071027	What is the molecular Geometry of CIF3
Option A	T-Shape
Option B	Octahedral
Option C	Trigonal Planar
Option D	Trigonal Bipyramid
Correct Option	A

Q. No. $\mathbf{7 8}$ 0071028	Insulin contains $\mathbf{2 . 8 \%}$ sulphur. The minimum molecular weight of insulin is
Option A	1142.85

Option B	942.44
Option C	2800
Option D	3200
Correct Option	A

Q. No. $\mathbf{7 9}$ 0071029	The kinetic energy of $\mathbf{8 . 0}$ moles of $\mathbf{N}_{\mathbf{2}}$ gas at $\mathbf{1 2 7 ^ { \mathbf { 0 } } \mathbf { C } \text { is } (\mathbf { R } = \mathbf { 2 } \text { calmole } \mathbf { K } ^ { \mathbf { - 1 } } \mathbf { K } ^ { \mathbf { - 1 } })}$
Option A	9600 cal
Option B	4800 cal
Option C	1400 cal
Option D	1700 cal
Correct Option	\mathbf{A}

Q. No. 80 0071030	Which of the following industry waste of phenolic compounds and suspended solids?
Option A	Sugar
Option B	Petroleum
Option C	Paper
Option D	Detergent
Correct Option	B

Q. No. 81 0071031	Which of the following crystal has no rotation of symmetry?
Option A	Triclinic
Option B	Hexagonal
Option C	Orthorhombic
Option D	Cubic
Correct Option	A

Q. No. 82 0071032	The aqueous solution of $\mathbf{H C O O} \mathbf{N a , ~ K C N ~ a n d ~} \mathbf{C}_{6} \mathbf{H}_{\mathbf{5}} \mathbf{N H} \mathbf{3} \mathbf{C l}$ are
Option A	Basic, basic and acidic
Option B	Acidic, basic and neutral
Option C	basic, basic and neutral
Option D	neutral, basic and neutral
Correct Option	A

Q. No. 83 0071033	Heavy water freezes at which temperature
Option A	$18^{\circ} \mathrm{C}$
Option B	$3.8^{\circ} \mathrm{C}$
Option C	$38^{\circ} \mathrm{C}$
Option D	$10^{\circ} \mathrm{C}$
Correct Option	B

Q. No. 84 0071034	Why gypsum is added to cement
Option A	Setting time of cement become less

Option B	Setting time of cement increases
Option C	Cement colour change
Option D	Shining surface is obtained
Correct Option	B

Q. No. 85 0071035	Which of the following is a highly corrosive salt
Option A	FeCl_{2}
Option B	$\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
Option C	PbCl_{2}
Option D	HgCl_{2}
Correct Option	D

Q. No. 86 0071036	The atomic weight of AI is 27. When a current of 3 Faradays is passed through a solution of $\mathbf{A l}^{+++}$ions, the weight of AI deposited is
Option A	27
Option B	45
Option C	36
Option D	18
Correct Option	A

Q. No. 87 0071037	Which oxide of nitrogen is isoelectronic with CO_{2} ?
Option A	NO_{2}
Option B	NO
Option C	$\mathrm{N}_{2} \mathrm{O}$
Option D	$\mathrm{N}_{2} \mathrm{O}_{2}$
Correct Option	C

Q. No. 88 0071038	Heating of pyrites in air for oxidation of sulphur is called
Option A	Calcination
Option B	Smelting
Option C	Slagging
Option D	Roasting
Correct Option	D

Q. No. 89 0071039	Colloidal solution of arsenious sulphide can be prepared by
Option A	Double decomposition
Option B	Electrodispersion method
Option C	Peptization
Option D	Hydrolysis
Correct Option	A

Q. No. 90 0071040	Diaspore and corundum are ores of
Option A	Al and Si
Option B	Al and Fe

Option C	Fe and Si
Option D	Al
Correct Option	D

Q. No. 91 0071041	During electrolysis graphite is used as an electrode and not diamond because
Option A	Graphite is cheaper
Option B	Graphite is soft
Option C	Graphite is non reactive
Option D	Diamond does not posses free electrons while graphite posses free electrons
Correct Option	D

Q. No. 92 0071042	Laughing gas is prepared by heating
Option A	$\mathrm{NH}_{4} \mathrm{NO}_{3}$
Option B	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Option C	$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaNO}_{4}$
Option D	$\mathrm{NH}_{4} \mathrm{Cl}$
Correct Option	A

Q. No. 93 0071043	When plants and animals decay, the organic Nitrogen is converted into inorganic Nitrogen. The inorganic Nitrogen is the form of
Option A	Ammonia
Option B	Element of N
Option C	Nitrates
Option D	Nitrides
Correct Option	A

Q. No. 94 0071044	Catalyst used in the Haber process for the manufacture of $\mathbf{N H}_{\mathbf{3}}$
Option A	$\mathrm{Fe}+\mathrm{Mo}$
Option B	$\mathrm{Al}_{2} \mathrm{O}_{3}$
Option C	CuO
Option D	Pt
Correct Option	A

Q. No. 95 0071045	Electronic configuration of $\mathbf{C r}$ is
Option A	$[\mathrm{Ar}] 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{1}$
Option B	$[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$
Option C	$[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
Option D	$[\mathrm{Ar}] 3 \mathrm{~d}^{5} 3 \mathrm{~s}^{1}$
Correct Option	\mathbf{C}

Q. No. 96 0071046	Which of the following does not considered as transition element
Option A	Cd
Option B	Pd

Option C	Mo
Option D	Tc
Correct Option	A

Q. No. 97 0071047	Molten NaCl conducts electricity due to presence of
Option A	Free molecules
Option B	Free electrons
Option C	Free ions
Option D	Atoms
Correct Option	C

Q. No. 98 0071048	When manganese dioxide is fused with $\mathbf{K O H}$ in presence of oxidizing agent like KNO $_{\mathbf{3}}$ will be obtained
Option A	$\mathrm{K}_{2} \mathrm{MnO}_{4}$
Option B	KMnO_{4}
Option C	$\mathrm{Mn}_{2} \mathrm{O}_{3}$
Option D	$\mathrm{Mn}_{4} \mathrm{O}_{3}$
Correct Option	A

Q. No. 99 0071049	IUPAC name of $\left[\mathbf{N i}\left(\mathbf{N H}_{3}\right)_{4}\right]\left[\mathbf{N i C l}_{4}\right]$
Option A	Tetraammine nickel(II) - Tetrachloro nickelate(II)
Option B	Tetraammine nickelate(II) - Tetrachloriodo nickel(II)
Option C	Tetrachloriodo nickel(II) - Tetraammine nickel(II)
Option D	Tetrachloriodo nickelate(II) - Tetraammine nickelate(II)
Correct Option	A

Q. No. 100 0071050	The number of unidentate ligands in the complex ion is called
Option A	Oxidation number
Option B	Coordination number
Option C	EAN
Option D	Primary valency
Correct Option	B

